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Reasons to pair

● Knowledge transfer
○ "We both know the codebase, but have strengths in different areas. Having both of us was 

helpful."

● Greater insulation from distractions / fewer rabbit holes
○ "It was easier to police the part of me that says `that would work but is there anything that 

might be better'”

● Knowledge distribution / avoiding silos
○ "Pairing on new functionality ensures more than one person is an expert in it later."



Benefits of pairing as practice

● Stronger relationships within our team
○ "I feel happier working this way" "It's less lonely"

● Higher quality code
○ "We made faster decisions. We made better decisions." "I feel more confident about the 

decisions we made."
○ "Y'all's code from when you were pairing was merged without any change requests."
○ "Yes, we should write a test for that" and other good habits reinforced by positive peer 

pressure.
○ Studies find lower error rates in code produced by pairs.



Start pairing

1. Select a task! 
2. Set an intention. A reason for the pairing session guides the way you'll 

communicate.
● Onboarding
● Design / code quality
● Productivity mode
● Code review

3.   Set up your environment/s



Set up environments

● Turn on absolute line numbers in your editor. This aids communication.

● Turn off relative line numbers. They make it hard to reference code.

● Use github's multi-author syntax on your commits

○ `Co-authored-by: Anna Headley <anna.headley@gmail.com>`

○ Add these to your .gitmessage configuration for easy access



Mechanics of pairing

Decide who will drive and who will navigate.

● Driver: Your job is to type.
● Navigator: You keep a slightly higher-level mindset. Keep track of the next 

few things the driver will be doing to help with transitions. Look out for bugs 
and edge cases. Ask questions.

Use any screen-sharing program to share the driver's screen.

Switch roles periodically.



Talk a lot

When pairing you are working together, not next to one another. Your pair should 
know what you are thinking at all times, because you're thinking aloud. Your pair 
should know what you are doing, because you are looking at something together 
and narrating your navigation (e.g. "let's go back to the test") or because you 
have told them something you'll do in parallel (e.g. "I'm going to check that 
syntax real quick").



Assess as you go

● Check yourself. Are you behaving generously? Are you being patient? Are 
there power dynamics that you can ease?

● Speak up. Tell your pair what you need to make it work. Slower pace? 
Answers to questions?



Potential vectors of power dynamics

● junior - senior
● "wrong" background - "right" 

background
● learning developer - teaching 

developer
● feminine - masculine
● people of color - white folks
● women & other genders - men

● national origin
● native language
● external signs of religion
● editor preference
● programming language
● location in stack

source: https://twitter.com/sarahmei/status/990968833547497472



Wrap up

● Do a small retro for the pair session, especially if this is your first time 
pairing with one another, or it's been a while since you've done a retro 
together.

● If there's unfinished work, decide whether to pair again or who will finish it. 
Try to avoid having one person work more on the issue if you'll continue 
working together.



Introducing pairing to your team

Some people on the team want to try more pairing, but everyone is used to 
working solo most of the time.

Informal introduction requires people to ask one another if they are available / 
want to pair. It can be hard to time these requests, and they can feel awkward to 
make.

Figure out within your team how to introduce formalities to ensure success. 
Evaluate your practice periodically as a team.



A formal pairing mechanism

Example: During our Friday wrap-up meeting, we will ask if anyone wants to pair 
next week, and match people up. Those people will pair 3 afternoons, or similar. 
Other details can be arranged at this time, such as what kinds of issues to work 
on.

● Ensure no one pairs all day every day.
● Ensure people get some consistency, and pair with a variety of colleagues.
● Ensure people who don't feel their personality / work style is compatible with 

pairing don't have to do it.



Further Resources / Notes

● https://tuple.app/pair-programming-guide/the-case-for-pair-programming - 
Covers much of this content with some great tips and research summaries.

● https://www.thoughtworks.com/insights/blog/pairing-are-you-doing-it-wron
g - Presents some variations on pairing, e.g. "mobbing" and "supported 
soloing".

https://tuple.app/pair-programming-guide/the-case-for-pair-programming
https://www.thoughtworks.com/insights/blog/pairing-are-you-doing-it-wrong
https://www.thoughtworks.com/insights/blog/pairing-are-you-doing-it-wrong

