
Hydramata Works
A focus on modeling Predicates and dynamic composition of Works

Conclusions
Hydramata::Works is in the pre-alpha stages of

development. However, by adhering to the

methodology, feature exploration and completion has

been fast and flexible. And while there are many

moving parts and configuration points, there are

guideposts for entry both adoption and development.

By separating structure from behavior – that is to say

focusing on an object’s single responsibility – the path

of upgradability and maintainability will be less than

traditional Rails and Hydra application development.

Further Reading
● Avdi Grim’s Naught - https://github.com/avdi/naught

● Avdi Grim’s “Confident Ruby”

● Corey Haines “Understanding the Four Rules of Simple

Design”

● Eric Freeman & Elisabeth Freeman’s “Head First

Design Patterns”

● Jim Weirich’s Wyriki - https://github.

com/jimweirich/wyriki

● Robert Martin’s "The Clean Coder”

● Robert Martin’s "Clean Code”

Introduction
A Response to Shared Development

● We want the same things…
○ But we can't agree on the details.

● We have the same things…
○ But they are just different enough.

● We do the same things…
○ But not quite and sometimes at different times.

Customization and Flexibility are Mandatory

● Create new resource types on the fly

● Create and rearrange predicates on the fly

● Expose command line ready services

● Leverage existing views for greater reusability

● Internationalize all the things

Methods
Ruby on Rails Engine

● A logical container for models, views, and services

● Exposes configuration points and generators

● Separates concerns from application

S.O.L.I.D. Design Principles

● Single responsibility; Data Structure or Behavior

● Open for extension, Closed for modification

● Liskov’s substitution; Subclass behavior

● Interface segregation; Clear expectations of object

interaction

● Dependency inversion; Allow for customization of

collaborators

Test Driven Development

● Specify a feature by providing examples

● Write the integration test

● Iterate on units and tests to complete feature

Deliberate Decisions

● Tests must be fast because so Test Driven

Development is possible

● Objects are of two major forms

○ Data Structures: Buckets of data, immutable

○ Functions: Behavior that takes an input and returns

an output

● Craft services with an eye towards the command line

● Clear entry points for adopters of Hydramata::Works

because others will be helping

● Automatic verification of Documentation

Acknowledgements
Thank you to the Curate team at: Data Curation

Experts, Indiana University, Northwestern University,

University of Cincinnati, University of Virginia

Thank you to the Orcid House Development team:

Carolyn Cole (Penn State), Eric James (Yale), Glen

Horton (University of Cincinnati), Jim Halliday (Indiana

University), Mike Stromming (Northwestern

University), Patrick Burke (University of Cincinnati),

Paul Clough (Northwestern University), Sue Richeson

(University of Virginia)

More on Hydramata Works
Follow along at ndlib.github.io/hydramata-works

Contribute at github.com/ndlib/hydramata-works

Example at github.com/ndlib/hydra_connect_demo

By email jfriesen@nd.edu

Scenario: Hydra Development
Today
Given an existing Work Type of Article (i.e. a subclass of ActiveFedora::Base)

And the Abstract predicate is defined for other work types

When I want to add the Abstract predicate to Articles

Then I must add the corresponding Datastream class

And I must update the Article class

And I must update the Form view

And I must update the Show view

And I might update the Index view

And I must commit my changes

And I must push my changes

And I must deploy to a Staging environment to verify changes

And I must deploy to Production to see my changes

Customization via Diminishing
Specificity
Look for views and translations first in the most specific case, then less general

and so forth.

For example, rendering the show view of an Article’s Abstract predicate,

Hydramata looks for:

1. ./hydramata/works/properties/article/abstract/_show.html.erb

2. ./hydramata/works/properties/abstract/_show.html.erb

3. ./hydramata/works/properties/_show.html.erb

You can also specify that a given Work Type or Predicate renders or translates as

another thing (i.e. Abstract will render as a Description, but translate as Abstract)

Persisted Data is the Canonical
Data Model; Not the Ruby Model
Hydramata::Works interrogates your Fedora object to build the in-memory data

structure. This may mean you need different interrogation and sniffing functions

for your objects. It also means you have options for handling Fedora objects not

ingested via a traditional Hydra application.

ActiveRecord::Base leans on the schema of the database to expose the attributes

of the data structure. Migrations enforce this. ActiveFedora::Base relies on in-code

representation of schema, which leads to migration challenges.

Scenario: Hydra Development
with Hydramata Works
Given an existing Work Type of Article

And the Abstract predicate is defined for other work types

When I want to add the Abstract predicate to Articles

Then I must make a database entry associating Abstract to Articles

Don’t Repeat Knowledge
Since Work Types and Predicates are defined in the database, it is possible to

automate the build of documentation regarding the predicates that make up your

work types; And use the internationalization to further explain what this is about.

Numerous Creases as You Move
Your Data
From Fedora to In Memory it is Feasible and Trivial to:

● Only load the predicates that the user can see

● Load predicates based on the object’s last updated date

From In Memory to Output Buffer:

● Define custom rendering options by Work Type, Predicate (Time of Year?

Object Identifier)

● Define new buffers: To File System, To HTML, To JSON, To RDF

From Input to Persistence

● Allow trusted sources (i.e. Metadata librarians) to attach additional predicates

and values to a given subject.

● Persist all user input without sending it straight to Fedora

From Web Request to Services:

● Extend existing behavior without Ruby tomfoolery

https://github.com/avdi/naught
https://github.com/jimweirich/wyriki
https://github.com/jimweirich/wyriki
https://github.com/jimweirich/wyriki
https://ndlib.github.io/hydramata-works
https://github.com/ndlib/hydramata-works
https://github.com/ndlib/hydra_connect_demo
mailto:jfriesen@nd.edu

